MEMORANDUM

Faculty Senate approved February 3, 2022
TO: Deans and Chairs
FROM: Becky Bitter, Sr. Assistant Registrar
DATE: January 24, 2022
SUBJECT: Minor Change Bulletin No. 8
The courses listed below reflect the minor curricular changes approved by the catalog editor since approval of the last Minor Change Bulletin. The column to the far right indicates the date each change becomes effective.

Subject	Course Number	Revise Drop	Current	Proposed	Effective Date
AGTM	314	Revise	Agricultural Power Units and Mobile Electrical Systems 3 (2-3) Principles of thermodynamics, engine cycles, transmissions, electrical, starting, braking, steering, suspension systems, differentials and hydraulic systems. Typically offered Fall.	Agricultural Power Units and Mobile Electrical Systems 3 (2-3) Principles of thermodynamics, engine cycles, transmissions, electrical, starting, braking, steering, suspension systems, differentials and hydraulic systems. Typically offered Fall. Cooperative: Open to UI degree-seeking students.	8-22
AGTM	412	Revise	Human and Machinery Risk Management 3 Course Prerequisite: Junior standing. History and current status of farm worker injury prevention programs in the US including worker's compensation insurance. Typically offered Spring.	Human and Machinery Risk Management 3 History and current status of farm worker injury prevention programs in the US including worker's compensation insurance. Typically offered Spring.	8-22
ASTRONOM	581	Revise	Advanced Topics in Astronomy 3 May be repeated for credit; cummlative maximum 12 heurs. Advanced topics of current interest in astronomy. Typically offered Fall and Spring. Cooperative: Open to UI degree-seeking students.	Advanced Topics in Astronomy 3 May be repeated for credit. Advanced topics of current interest in astronomy. Typically offered Fall and Spring. Cooperative: Open to UI degree-seeking students.	8-22

BIO ENG	210	Revise	Bioengineering Analysis 2 (1- 3) Course Prerequisite: CHE 201 with a C or better; MATH 220 or concurrent enrollment. Analytical problem solving, modeling and computer methods for bioengineering applications. Typically offered Spring and Summer.	Bioengineering Analysis 2 (1- 3) Course Prerequisite: CHE 201 with a C or better; MATH 220 or concurrent enrollment. Analytical problem solving, modeling and computer methods for bioengineering applications. Typically offered Spring.	8-22
BIOLOGY	521	Revise	Quantitative Genetics 3 Course Prerequisite: BIOLOGY 519. Fundamentals of quantitative genetics; evolutionary quantitative genetics. Cooperative: Open to UI degree-seeking students.	Quantitative Genetics 3 Fundamentals of quantitative genetics; evolutionary quantitative genetics. Cooperative: Open to UI degree-seeking students.	1-22
CPT S	471	Revise	Computational Genomics 3 Course Prerequisite: CPT S 223 or 233, with a C or better; CPT S 350 with a C or better; admitted to the major or minor in Computer Science, Computer Engineering, Electrical Engineering, Software Engineering, or Data Analytics. Fundamental algorithms, techniques and applications. Credit not granted for both CPT S 471 and CPT S 571. Offered at 400 and 500 level. Typically offered Spring.	Computational Genomics 3 Course Prerequisite: CPT S 223 or 233, with a C or better; CPT S 350 with a C or better or concurrent enrollment; admitted to the major or minor in Computer Science, Computer Engineering, Electrical Engineering, Software Engineering, or Data Analytics. Fundamental algorithms, techniques and applications. Credit not granted for both CPT S 471 and CPT S 571. Offered at 400 and 500 level. Typically offered Spring.	1-22
$\begin{aligned} & \text { CROP SCI / } \\ & \text { SOIL SCI } \end{aligned}$	506	Revise	Research Presentations 2 Learn and practice skills needed to prepare and effectively present scientific information orally to a range of audiences in a variety of formats and technologies. (Crosslisted course offered as CROP SCI 506; SOIL SCI 506). Typically offered Fall.	Research Presentations 2 Course Prerequisite: Admission to the Crop Science or Soil Science graduate degree program. Learn and practice skills needed to prepare and effectively present scientific information orally to a range of audiences in a variety of formats and technologies. (Crosslisted course offered as CROP SCI 506; SOIL SCI 506). Typically offered Fall.	1-22
CS	121	Revise	Program Design and Development 4 (3-3) Course Prerequisite: MATH 171 with a	Program Design and Development 4 (3-3) Course Prerequisite: MATH 108, 171,	1-22

			C or better er conctrrent enrollment. Formulation of problems and top-down design of programs in a modern structured language for their solution on a digital computer. Typically offered Fall.	$172,182,201,202,206$, or 220 , each with a C or better, or a minimum ALEKS math placement score of 78%. Formulation of problems and top-down design of programs in a modern structured language for their solution on a digital computer. Typically offered Fall.	
CS	223	Revise	Advanced Data Structures 3 Course Prerequisite: CS 122 with a C or better; CS 166 with a C or better. Advanced data structures, object oriented programming concepts, and program design principles. Typically offered Fall.	Advanced Data Structures 3 Course Prerequisite: CS 122 with a C or better. Advanced data structures, object oriented programming concepts, and program design principles. Typically offered Fall.	1-22
CS	251	Revise	C Programming for Engineers 4 (3-3) Course Prerequisite: MATH 171 with a C or better or eenctrrent enrollment. Introduction to the C programming language and application to engineering problem solving; introduction to data structures, sorting and searching; laboratory use of integrated development environments and debugging tools. Typically offered Spring.	C Programming for Engineers 4 (3-3) Course Prerequisite: MATH 108, 171, 172, 182, 201, 202,206 , or 220 , each with a C or better, or a minimum ALEKS math placement score of 78%. Enrollment not allowed if credit already earned for CS 261. Introduction to the C programming language and application to engineering problem solving; introduction to data structures, sorting and searching; laboratory use of integrated development environments and debugging tools. Typically offered Spring.	1-22
CS	260	Revise	Computer Organization 3 Course Prerequisite: CS 122 with a C or better. Introduction to computer architecture, data representation, design and analysis of instruction sets, implementation of machine instructions, virtual memory and multiprocessing. Typically offered Fall.	Computer Organization 3 Course Prerequisite: CS 122 with a C or better; CS 166 with a C or better. Introduction to computer architecture, data representation, design and analysis of instruction sets, implementation of machine instructions, virtual memory and multiprocessing. Typically offered Fall.	1-22
CS	261	Revise	C and Assembly Language Programming 3 Course	C and Assembly Language Programming 3 Course	1-22

			Prerequisite: CS 260 with a C or better. C language concepts, professional practices and C programming; module linkage; assembly language concepts and programming. Typically offered Spring.	Prerequisite: CS $\underline{122}$ with a C or better. Enrollment not allowed it credit already earned for CS 251. C language concepts, professional practices and C programming; module linkage; assembly language concepts and programming. Typically offered Spring.	
CS	317	Revise	Automata and Formal Languages 3 Course Prerequisite: CS 122 with a C or better; CS 166 with a C or better. Finite automata, regular sets, pushdown automata, context-free language, Turing machines and the halting problem. Typically offered Fall.	Automata and Formal Languages 3 Course Prerequisite: CS 122 with a C or better; CS 166 with a C or better or MATH 301 with a C or better. Finite automata, regular sets, pushdown automata, context-free language, Turing machines and the halting problem. Typically offered Fall.	1-22
CS	360	Revise	Systems Programming 4 (3-3) Course Prerequisite: CS 251 or 261 with a C or better. Implementation of systems programs, concepts of computer operating systems; laboratory experience in using operating system facilities. Typically offered Spring.	Systems Programming 4 (3-3) Course Prerequisite: CS 122 with a C or better; CS 251 or 261 with a C or better. Implementation of systems programs, concepts of computer operating systems; laboratory experience in using operating system facilities. Typically offered Spring.	1-22
CS	425	Revise	Digital Forensics 3 Course Prerequisite: CS 360 with a C or better. Use of computers in the investigation of criminal and civil incidents in which computers or computer technology play a significant or interesting role. Typically offered Spring.	Digital Forensics 3 Course Prerequisite: CS 360 with a C or better or concurrent enrollment. Use of computers in the investigation of criminal and civil incidents in which computers or computer technology play a significant or interesting role. Typically offered Spring.	1-22
CS	426	Revise	Applied Systems Security 3 Course Prerequisite: CS 224 with a Cor better; CS 261 with a C or better, admitted to the major in Computer Science. Foundations, theory, and practice of non-cryptographic computer security; design of secure software; adding security	Applied Systems Security 3 Course Prerequisite: CS 360 with a C or better or concurrent enrollment. Foundations, theory, and practice of noncryptographic computer security; design of secure software; adding security to existing systems; other	1-22

			to existing systems; other contemporary topics in security. Typically offered Fall.	contemporary topics in security. Typically offered Fall.	
CS	440	Revise	Artificial Intelligence 3 Course Prerequisite: CS 320 with a C or better or concurrent enrollment; STAT 212 with a C or better or STAT 360 with a C or better. Knowledge representation and automated problem solving; theory and application of agent programming. Typically offered Spring.	Artificial Intelligence 3 Course Prerequisite: CS $\underline{223}$ with a C or better; STAT 212 with a C or better or STAT 360 with a C or better. Knowledge representation and automated problem solving; theory and application of agent programming. Typically offered Spring.	1-22
CS	458	Revise	Mobile Application Development 3 Course Prerequisite: CS 360 with a C or better or concurrent enrollment. Design and development of mobile applications; introduction to mobile application frameworks, including user interface, sensors, event handling, data management and network communication. Typically offered Spring.	Mobile Application Development 3 Course Prerequisite: CS 223, 224, or 360 , each with a C or better. Design and development of mobile applications; introduction to mobile application frameworks, including user interface, sensors, event handling, data management and network communication. Typically offered Spring.	1-22
E M	580	Revise	Quality Control and Reliability 3 Course Prerequisite: E M 503. Quality analysis, modeling process, product quality, statistical process control, process capability studies; sampling concepts, reality models, predictions, design testing. Credit not granted for both E M 480 and E M 580. Recommended preparation: an undergraduate course in statistics. Offered at 400 and 500 level.	Quality Control and Reliability 3 Quality analysis, modeling process, product quality, statistical process control, process capability studies; sampling concepts, reality models, predictions, design testing. Credit not granted for both E M 480 and E M 580. Recommended preparation: an undergraduate course in statistics. Offered at 400 and 500 level.	1-22
FRENCH	203	Revise	Third Semester 4 (3-2) Course Prerequisite: FRENCH 102 with a C or better, or WSU language placement exam score of 3 or higher. Grammar review and further development of speaking, listening, reading, and	Third Semester 4 Course Prerequisite: FRENCH 102 with a C or better, or WSU language placement exam score of 3 or higher. Further development of speaking, listening, reading, and writing skills. Not open to	8-22

			writing skills. Not open to native speakers except with permission. Typically offered Fall and Spring.	native speakers except with permission. Typically offered Fall and Spring.	
FRENCH	204	Revise	Fourth Semester 4 (3-2) Course Prerequisite: FRENCH 203 with a C or better, or WSU language placement exam score of 5 or higher. Continued practice in spoken and written language; selected texts in a cultural context. Not open to native speakers except with permission. Typically offered Fall and Spring.	Fourth Semester 4 Course Prerequisite: FRENCH 203 with a C or better, or WSU language placement exam score of 5 or higher. Continued practice in spoken and written language; selected texts in a cultural context. Not open to native speakers except with permission. Typically offered Fall and Spring.	8-22
GERMAN	203	Revise	Third Semester 4 (3-2) Course Prerequisite: GERMAN 102 with a C or better, or WSU language placement exam score of 3 or higher. Further development of speaking, listening, reading, and writing skills. Not open to native speakers except with permission. Typically offered Fall and Spring.	Third Semester 4 Course Prerequisite: GERMAN 102 with a C or better, or WSU language placement exam score of 3 or higher. Further development of speaking, listening, reading, and writing skills. Not open to native speakers except with permission. Typically offered Fall and Spring.	8-22
GERMAN	204	Revise	Fourth Semester 4 (3-2) Course Prerequisite: GERMAN 203 with a C or better, or WSU language placement exam score of 5 or higher. Continued practice in spoken and written language; selected texts in a cultural context. Not open to native speakers except with permission. Typically offered Fall and Spring.	Fourth Semester 4 Course Prerequisite: GERMAN 203 with a C or better, or WSU language placement exam score of 5 or higher. Continued practice in spoken and written language; selected texts in a cultural context. Not open to native speakers except with permission. Typically offered Fall and Spring.	8-22
KIN ACTV	119	Revise	Aerobic Dance 1 (0-2) May be repeated for credit; cumulative maximum 4 hours. Typically offered Fall and Spring. S, F grading.	Cardio Dance 1 (0-2) May be repeated for credit; cumulative maximum 4 hours. Typically offered Fall and Spring. S, F grading.	1-22
MATH	216	Revise	Discrete Structures 3 Course Prerequisite: MATH 108 with a C or better, OR MATH 140, 171, 172, 182, or MATH 202 concurrent enrollment. Discrete mathematics, trees, graphs,	Discrete Structures 3 Course Prerequisite: MATH 108 with a C or better, OR MATH 140, $171,172,182$, or 202 (concurrent enrollment also allowed). Discrete mathematics,	1-22

			elementary logic, and combinatorics with application to computer science. Recommended preparation: Programming course. Typically offered Fall, Spring, and Summer.	trees, graphs, elementary logic, and combinatorics with application to computer science. Recommended preparation: Programming course. Typically offered Fall, Spring, and Summer.	
PHYSICS	581	Revise	Advanced Topics in Physics 3 May be repeated for credit; eumulative maximum 12 hours. Topics of current interest in advanced physics. Typically offered Fall and Spring. Cooperative: Open to UI degree-seeking students.	Advanced Topics in Physics 3 May be repeated for credit. Topics of current interest in advanced physics. Typically offered Fall and Spring. Cooperative: Open to UI degree-seeking students.	8-22
PSYCH	333	Revise	Abnormal Psychology 3 Course Prerequisite: PSYCH 105. Problems of abnormality from traditional and evolving points of view; types, therapies, outcomes, preventive techniques. Typically offered Fall; Spring, and Summer.	Fundamentals of Psychological Disorders 3 Course Prerequisite: PSYCH 105. An introduction to psychological disorders, their diagnoses, contributing factors, and treatments. Typically offered Fall and Spring.	8-22
PSYCH	511	Revise	Experimental Design, T-Tests, and Analysis of Variance 3 Course Prerequisite: Ph.D. student in Psychology or Business Administration. Parametric, nonparametric, repeated-measures, and multivariate ANOVA; planned comparisons; confidence intervals and power analysis; experimental design and variants. Typically offered Fall.	Experimental Design, T-Tests, and Analysis of Variance 3 Course Prerequisite: Ph.D. student in Psychology. Parametric, nonparametric, repeated-measures, and multivariate ANOVA; planned comparisons; confidence intervals and power analysis; experimental design and variants. Typically offered Fall.	8-22
PSYCH	512	Revise	Non-Experimental Designs, Correlation, and Regression 3 Course Prerequisite: Ph.D. student in Psychology er Business Administration. Simple and multiple correlation and regression; time-series analysis; factor analysis; field research and quasi-experimental design. Typically offered Spring.	Non-Experimental Designs, Correlation, and Regression 3 Course Prerequisite: Ph.D. student in Psychology. Simple and multiple correlation and regression; time-series analysis; factor analysis; field research and quasi-experimental design. Typically offered Spring.	8-22
SHS	545	Revise	Autism Spectrum Disorder 2 Course Prerequisite: SHS 542.	Autism Spectrum Disorder 2 Overview and discussions of the	1-22

			Overview and discussions of the characteristics, causes, assessments, and interventions for autism spectrum disorder.	characteristics, causes, assessments, and interventions for autism spectrum disorder.	
SPANISH	$\mathbf{2 0 3}$	Revise	Third Semester 4 (3-2) Course Prerequisite: SPANISH 102 with a C or better, or WSU language placement exam score of 3 or higher. Further development of speaking, listening, reading, and writing skills. Not open to native speakers except with permission. Typically offered Fall and Spring.	Third Semester 4 Course Prerequisite: SPANISH 102 with a C or better, or WSU language placement exam score of 3 or higher. Further development of speaking, listening, reading, and writing skills. Not open to native speakers except with permission. Typically offered Fall and Spring.	$\mathbf{8 - 2 2}$

